Gregorevic laboratory: Muscle Research and Therapeutics

Research Overview

View A/Professor Gregorevic's latest PubMed publications listing here

Skeletal muscle is important for sustained health throughout a persons lifespan, yet we easily take for granted its role in our health and lifestyle. It accounts for almost half of our body mass, and as such even a moderate decline in muscle strength caused by aging, extended bed rest, injury or a sedentary lifestyle can dramatically increase the incidence and severity of many serious medical conditions.

The goal of the Muscle Research and Therapeutics Laboratory is to understand the cellular mechanisms that regulate muscle growth, muscle wasting, and muscle metabolism so that we can develop new methods aimed at preventing or treating the symptoms of muscle-related conditions.

Our research places a particular emphasis on employing recombinant viral vectors, designed and manufactured “in-house”, as a means to selectively alter gene expression in mouse models of human disease states. We also perform a range of analyses using a host of established and cutting-edge techniques spanning the disciplines of biological/biomedical science. By employing the advantages of gene delivery technologies in this way, we can interrogate the cellular mechanisms controlling muscle adaptation in vivo with a combination of speed, precision, and efficacy not attained using other approaches.


A/Prof Paul Gregorevic, Head of Laboratory

Dr Kevin Watt, Research Fellow

Dr Rachel Thomson, Senior Research Assistant

Dr Hongwei Qian, Research Fellow

Alaina Lee, Senior Research Assistant

Dr Craig Goodman, Research Fellow


Adam Hagg, PhD

Alastair Saunders, Masters

Jamie Ellis, Masters

Scarlett Parker, Masters

Wayne Du, Masters

Matteo Pitteri, Masters

Raushaan Seychell, Masters


2019-2022 FSHD Global Research Foundation Research Grant. Testing novel therapeutic strategies to combat the metabolic disturbances underlying the muscle pathology of FSHD

2019-2021 NHMRC Project Grant. Developing a novel class of therapeutics for muscle wasting and frailty

2019-2022 ARC Development Grant. Age-related mechanisms of amino acid signalling in skeletal muscle

2018-2021 NHMRC Project Grant. Rescuing the dystrophin-glycoprotein complex to protect muscles from wasting conditions

2018-2021 NHMRC Research Fellowship. Using gene delivery technologies to define novel mechanisms of skeletal muscle adaptation, and develop muscle directed interventions for frailty and serious illness

2018-2020 Cancer Council Victoria Project Grant. Towards precision medicine for Cancer Cachexia 

2017-2020 NHMRC Project Grant. Investigating Follistatin-based interventions for long-term protection against frailty associated with chronic illness and aging

2017-2020 NHMRC Project Grant. The effects of ACTN3 R577X on muscle wasting and repair, and response to therapy

Research Opportunities

This research project is available to Master of Biomedical Science to join as part of their thesis.
Please contact the Research Group Leader to discuss your options.

Research Outcomes

The research team has over 15 years experience in the design and application of recombinant viral vectors as tools for gene delivery. Vector manufacture is undertaken in-house using purpose configured viral vector facilities. These reagents have helped researchers to study gene manipulation in musculature at the whole muscle/animal scale with precision, speed and affordability not matched by other methods. Vectors made in-house have also been adapted for study in other tissues including cardiac and smooth muscle, the vasculature, adipose tissue, and hepatic, pancreatic, renal, and reproductive systems.

Researchers are encouraged to contact the team if seeking assistance to develop customised recombinant viral vectors for their own research.