






studies of ADCC Abs in both animal models and expanded studies
in humans with characterized cross-protective immunity to influ-
enza are now warranted.
The isolation of influenza-specific Abs able to neutralize all 16

known subtypes of influenza Aviruses has been a major challenge.
The conservation of neutralizing epitopes is mostly restricted to
the membrane-distal subdomain of the influenza HA protein, the
HA1 region (45–47). Effective nonneutralizing Abs may not be lim-
ited by the same epitope constraints placed on neutralizing Abs
because they do not need to stop virus binding or entry. In pre-
liminary studies, we found that ADCC responses to the HA1 region
of the influenza protein induce a lower level of NK cell activation
than the full-length HA protein (data not shown). This implies that
ADCC Abs can also target non-HA1 regions within HA and such
responses could be more cross-protective (48, 49). Indeed, other

surface influenza proteins, including the NA and M2 protein, are
also likely to be targets for ADCC (49). Vaccination studies per-
formed using influenza M2 protein suggest a protective role me-
diated by nonneutralizing Abs (50–52). The M2-specific Abs were
shown to protect against both homologous and heterologous in-
fluenza virus challenge in the mouse model. A study by Jegerlehner
et al. (23) described the protective role of M2 ADCC-mediating
Abs, showing that they exhibited poor protection and a lower de-
gree of in vivo clearance. The protection mediated by M2 Abs has
been shown to be dependent on FcRs, implying an ADCC mech-
anism (24).
The importance of ADCC has become more prominent in a

number of fields, including cancer therapy and chronic viral in-
fections. Tumor-specific mAbs are more effective when designed
to elicit ADCC functions (53). In addition, HIV- and SIV-specific

FIGURE 6. Influenza ADCC toward pandemic H1N1

virus and proteins. (A) Activation of CD32CD56+ NK

cells by pandemic H1N1 (Auck/09) virus and H1 (Cal/

09) protein in the presence of influenza-seropositive

plasma. (B and C) Plasma from 10 influenza-exposed

(Flu+) adults and 4 influenza (naive) pigtail macaques

were assessed for reactivity to pandemic H1N1 virus

(B) and pandemic H1 HA protein (C) using the NK cell

activation assay. The IFN-g (left) and CD107a (right)

expression by CD32CD56+ NK cells was determined.

Values of NK cell activation were all background sub-

tracted, and influenza-exposed and naive samples for all

assays were compared using a Mann–Whitney U test

where p , 0.05 was considered significant. Lines on

the graphs denote median values.
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ADCC Abs have been implicated in providing protection in
macaque and human HIV/SIV vaccine studies (54–56). A major
constraint in measuring NK cell-mediated ADCC are the high
background levels of NK cell activation due to the presentation of
epitopes on foreign target cell lines and the limited presentation
of some Ags on the surface of target cells. Our NK cell activation
ADCC assay uses autologous PBMCs in which background levels
of NK cell activation are low and specific conformational Ags can
be used to assess ADCC activity. This should aid in the assessment
of ADCC Abs during influenza vaccine studies, but could also assist
in characterization of ADCC Abs in other viral diseases such as
HIV, hepatitis C, or dengue virus.
The near ubiquitous cross-reactive influenza-specific ADCC re-

sponses in healthy adults presumably reflect the cumulative effect
of multiple prior influenza infections. Our study of only 10 healthy
subjects identified high levels of broadly cross-reactive influenza-
specific ADCC Abs. Larger cohort studies should provide addi-
tional insights. Defining influenza-negative controls is difficult due
to the pervasive nature of influenza infection. Wewere able to study
a small amount of sera (40 ml) from only one influenza-naive infant,
limiting our experiments with this sample to be also performed at a
lower (1:10) dilution. We therefore included influenza-seronegative
macaque sera as the controls for our assays. Macaque plasma con-
tains a similar Ig composition to human sera, and sera from influ-
enza-infected macaques produce comparable NK cell activation to
human sera.
The comparative roles of NK cells versus other Fc-bearing cells

in mediating influenza-specific ADCC in vitro and in vivo remain
to be clarified. We detected influenza ADCC Abs in humans by
using NK cell activation; however, this is not the only CD16
receptor-bearing cell type. Other cell types such as monocytes also
may mediate influenza-specific ADCC in vivo and in vitro (57).
Furthermore, particular subsets of KIR-expressing NK cells may
most effectively mediate influenza-specific ADCC (58). Future
studies should define the relative contributions of NK cell subsets
and other Fc-bearing cell types in the mediation of influenza-
specific ADCC.
In summary, important assays to measure influenza-specific

ADCC Abs in humans were developed and used to show that
influenza-specific ADCC Abs to influenza exist in the absence of
detectable neutralizing Abs. Influenza-specific ADCC Abs were

shown to not only induce robust activation of NK cells, but also
mediate the clearance of influenza-infected blood and respiratory
epithelial cells in vitro. Influenza-specific ADCC Abs that recog-
nize pandemic H1N1 and avian H5N1 are also commonly present in
healthy adults, suggesting a possible mechanism of cross-protective
immunity. Further studies of influenza infection and vaccination
in humans and nonhuman primate models will provide insights into
the protective role of influenza ADCC Abs against a broad range of
influenza virus infections.
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Supplementary Fig 1. ADCC towards HIV and influenza proteins. Activation of 
CD3-CD56+ NK cells measured against either HA protein (PR8) or HIV gp140 
(AD8), in the presence of either HIV negative or HIV positive donor plasma. 
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Supplementary Fig 2. Influenza-ADCC towards PR8 virus in vaccinated 
macaques. Activation of CD3-CD56+ NK cells against PR8 influenza virus in 
the presence of purified Ig from pigtail macaques (n=3) before (pre-Flu) and 
after infection (post-Flu) with PR8 virus (A). Animals were administered 2 
doses of 108 pfu of both PR8 influenza virus and X-31 influenza virus via the 
respiratory tract at ~4 weekly intervals and sera studied 4 weeks after the last 
infection (B) HI Titre against PR8 influenza virus for animals tested either at 
day 0 (Pre) or day 133 (post) post influenza infection. 
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Supplementary Fig 3. Lack of influenza-ADCC antibodies in naïve 
human plasma sample. Activation of CD3-CD56+ NK cells against 
influenza H3 protein using plasma (1:10 dilution) from influenza naïve 
human or influenza exposed human.  
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