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The search for an HIV cure: tackling latent infection
Stephen J Kent, Jeanette C Reece, Janka Petravic, Alexey Martyushev, Marit Kramski, Robert De Rose, David A Cooper, Anthony D Kelleher, 
Sean Emery, Paul U Cameron, Sharon R Lewin, Miles P Davenport

Strategies to eliminate infectious HIV that persists despite present treatments and with the potential to cure HIV 
infection are of great interest. One patient seems to have been cured of HIV infection after receiving a bone marrow 
transplant with cells resistant to the virus, although this strategy is not viable for large numbers of infected people. 
Several clinical trials are underway in which drugs are being used to activate cells that harbour latent HIV. In a recent 
study, investigators showed that activation of latent HIV infection in patients on antiretroviral therapy could be 
achieved with a single dose of vorinostat, a licensed anticancer drug that inhibits histone deacetylase. Although far 
from a cure, such studies provide some guidance towards the logical next steps for research. Clinical studies that use 
a longer duration of drug dosing, alternative agents, combination approaches, gene therapy, and immune-modulation 
approaches are all underway. 

Introduction
Combination antiretroviral therapy has had a pronounced 
eff ect on the course of HIV infection, turning it from an 
infection that is typically fatal within a period of years into 
a manageable chronic disease. However, from a practical, 
public health, and economic perspective, elimination of 
HIV-1 infection would be preferable to long-term 
suppression of viral replication with drugs. Cure will 
probably require reduction or elimination of the HIV-1 
forms that persist in the presence of antiretroviral therapy. 
Several factors contribute to persistent HIV-1 infection, 
but a major reason is persistence of a replication-
competent pool of virus in resting CD4 T cells.1,2 

The pool of latently infected cells is established very 
early after the initial infection with HIV-1, usually before 
diagnosis and antiretroviral therapy in routine practice.3 
Very early initiation of antiretroviral therapy has been 
associated with a reduction in the number of latently 
infected cells, but virus rebounds when treatment is 
stopped.4–7 HIV in latently infected cells can remain 
dormant for the life of the cell and is not substantially 
aff ected by intensifi cation of antiretroviral therapy.8–10 
Attempts to eliminate these cells are a key theme of 
eradication strategies,2 with calls to invest heavily in 
innovative approaches.11 A cure for HIV is usually defi ned 
as either a sterilising cure (by which in theory all latent 
HIV DNA is eliminated) or a functional cure (wherein 
latent HIV persists but viraemia is very low or absent 
without the use of antiretroviral therapy). We focus on 
the potential for a sterilising cure.

Antiretroviral therapy-based strategies
HIV-1 integrates into the chromosomal DNA of infected 
cells as part of its lifecycle. A small proportion of infected 
cells remain transcriptionally silent but with fully infectious 
virus.12 These cells are thought to restart active HIV-1 
replication when antiretroviral therapy is withdrawn, even 
after many years of treatment. How these cells persist for 
many years is not fully understood. The presence of HIV-1 
DNA in very long-lived cells (particularly memory CD4 T 
cells) seems to be the main reason that this latent pool of 
proviral HIV-1 does not decay or evolve.13–15 Some of these 

cells might homoeostatically proliferate to maintain the size 
of the viral reservoir.16 Alternatively, even very low-level 
replication could result in infection of new cells and 
replenishment of the reservoir despite antiretroviral therapy.8 
However, the absence of viral evolution or the development 
of drug resistance argues against continued replication in 
patients on antiretroviral therapy. 

Treatment intensifi cation studies have not shown 
reduction in the size of the HIV-1 reservoir or prevented 
the recrudescence of viraemia after withdrawal of 
treatment.10 One study8 in 2010, however, showed that 
intensifi cation of successful antiretroviral therapy with 
the integrase inhibitor raltegravir resulted in a subset of 
patients having increased unintegrated forms of HIV-1 
DNA.8 Although controversial,17 these results imply that 
the integrase-inhibitor intensifi cation might have slightly 
reduced replication. Complete blockage of new rounds of 
infection is likely to be an important starting point for 
future studies aimed at reducing the size of the latent 
reservoir.

The Berlin patient and bone marrow 
transplantation
One person is widely believed to have been cured of 
HIV-1 infection.18–20 Although anecdotal, the case is 
instructive and provides hope that other, safer strategies 
could be developed in the future. The patient, a 40-year-
old HIV-positive man living in Berlin, developed acute 
myeloid leukaemia and received a bone-marrow 
transplant from a donor with a homozygous mutation 
(Δ32) in the gene encoding C-C chemokine receptor 5, 
CCR5, which renders the donor cells highly resistant to 
infection from most HIV-1 strains (fi gure 1). He stopped 
antiretroviral therapy and detectable HIV viraemia did 
not return. Intensive eff orts to detect residual HIV-1 
from several tissues generally resulted in undetectable or 
barely detectable HIV-1 DNA or RNA.18 

According to a report21 from 2012, two HIV-positive 
patients with lymphoma who were on antiretroviral 
therapy received allogeneic bone marrow transplants 
(but from donors who were not resistant to HIV), and 
HIV-1 was no longer detectable in either patient. 
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Although these patients have not interrupted their 
antiretroviral therapy and cure is unconfi rmed, these 
additional cases raise the possibility that factors other 
than HIV- resistance conferred by the transplanted bone 
marrow could have cured the Berlin patient. Factors that 
could contribute to the elimination of HIV latency after 
bone marrow transplantation include graft-versus-host 
disease, the use of immunosuppressive drugs, and a 
possible eff ect of the hosts being heterozygous for the 
CCR5 mutation. Although bone marrow transplantation 
is not a method that could be implemented widely to 
cure HIV, investigation of the most relevant factors that 
reduce or eliminate HIV latency in this setting could lead 
to safer and more suitable alternatives.

Strategies to purge latently infected cells
Several interventions in patients who are on stable, long-
term antiretroviral therapy have been studied for their 
eff ect on the latent viral reservoir. Interleukin 2 activates 
CD4 T cells harbouring proviral HIV-1 DNA that, in theory, 
could be cleared with potent combination antiretroviral 
therapy.22 Interleukin-2 therapy showed promise in 
reducing the latent HIV reservoir in small studies,22 but in 
larger clinical trials did not reduce the latent virus 
reservoir.23 The anti-T-cell antibody muromonab-CD3 (also 
known as OKT3) also causes direct T-cell activation, but 
like interleukin 2 did not reduce HIV latency or improve 
clinical outcomes. Both agents were associated with 
substantial toxic eff ects.24,25 Interleukin 7 can reactivate 
HIV-1 in vitro,26 although clinical trials of the molecule in 
patients on antiretroviral therapy have not shown any 
reduction in the size of the latent HIV-1 reservoir.27 Several 
groups are studying the ability of other agents (particularly 
histone deacetylase inhibitors) to activate latent HIV-1 
transcription from resting CD4 T cells, and clinical trials 
are in progress to assess these agents.28 

Identifi cation of appropriate strategies for viral 
reactivation has proceeded in two ways. First, new drug 

discovery has been aimed at identifi cation of agents that 
through minimum signalling can activate virus expression 
from latently infected cells without cellular or immune 
activation. This approach depends on appropriate models 
for latency. The gold standard for cellular target remains 
cells that were latently infected in vivo. However, this 
approach is not always practical and screening assays that 
use resting primary CD4 T cells infected in vitro have also 
been used.29,30 Latently infected cell lines, although useful 
for defi ning the mechanisms that control latency,31 are 
oligoclonal and poorly mimic the variation in viral 
integration sites seen in vivo and in primary cell models.32 
Until comparisons of in-vivo and in-vitro eff ects are 
available through clinical trials, the relative usefulness of 
drug screening assays for inhibition of HIV-1 latency will 
remain unclear. Despite these limitations, candidate 
agents have been identifi ed, including those that act on 
NF-κB pathways of DNA transcription (eg, prostratin), 
epigenetic modifi ers (eg, histone deacetylase inhibitors), 
inhibitors of DNA methylation, and agents (eg, disulfi ram) 
that target the protein kinase AKT, which is involved in 
cell proliferation.33 A large array of small molecules that 
inhibit HIV-1 latency in at least some in-vitro models is 
now available.34

The second strategy is to move rapidly to clinical trials 
with existing, licensed therapeutic drugs that have the 
ability to reactivate the virus. Patients whose infections are 
suppressed with antiretroviral therapy are currently being 
enrolled in early clinical trials for treatment with viral 
activators. Preliminary results of one such study are 
promising,35 and further research should be done to defi ne 
the appropriate doses and durations needed to achieve 
eff ective clearance of the latent reservoir. The histone 
deacetylase inhibitor valproic acid was one of the fi rst 
drugs used, but it is a weak inhibitor of histone deacetylase 
at doses achievable in the clinic.36 Valproic acid showed 
promise in an initial investigation37 in which it was used 
together with intensifi ed antiretroviral therapy. However, 
subsequent studies showed that valproic acid had no 
eff ect on the reservoir, emphasising that the relation 
between in-vitro and in-vivo activity of latency-activating 
agents is as yet unclear (table).35,37–41 Potentially more potent 
histone deacetylase inhibitors, such as vorinostat, have 
recently been assessed in clinical trials in the USA with a 
single dose35 and in Australia with a regimen of 400 mg 
per day (the licensed daily dose of the drug when used for 
the treatment of cutaneous T-cell lymphoma) for 14 days 
(NCT01365065). The histone deacetylase inhibitors 
panobinostat and romidepsin are both more potent than 
vorinostat in the activation of latent HIV-1 in vitro, and a 
clinical trial of panobinostat has started in Denmark 
(NCT01680094). 

Inhibitors of DNA methylation such as decitabine are 
used in cancer chemotherapy and can modify HIV-1 
expression,31 but are not yet in clinical trials for HIV-1. 
Disulfi ram, a drug long used to treat alcoholism because 
of its inhibition of acetaldehyde dehydrogenase, might 

Figure 1: Timeline for treatment of the Berlin patient
The grey dotted line represents the limit of detection (one copy per mL) in tests used after transplantation. 
AML=acute myeloid leukaemia. cART=combined antiretroviral therapy.
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inhibit DNA methyltransferase and activate latent HIV.42 
It is currently being assessed in a clinical trial with a 
regimen of 500 mg per day for 14 days (NCT01286259). 
Recent in-vitro work has shown that disulfi ram activates 
latent HIV-1 via activation of the protein kinase AKT.33 
Prostratin activates the NF-κB pathway and latent HIV-1 
in vitro, but because of its serious toxic eff ects cannot be 
assessed in clinical trials. Development of activators of 
protein kinase C such as bryostatin or bryostatin 
analogues could be an alternative approach.43 Synergistic 
eff ects between histone deacetylase inhibitors, methyl-
ation inhibitors, histone methyltransferase inhibitors, 
activators of NF-κB, and interleukin 7 have all been shown 
in vitro,30,44 but such combinations remain unexplored in 
clinical studies so far.

Gene therapy approaches
The curing of the Berlin patient suggests that clearance of 
HIV-1 can be achieved through repopulation with CCR5-
defi cient haemopoietic cells, even in the presence of what 
seemed to be small amounts of virus using CXCR4 before 
bone marrow transplantation.18 This fi nding raises 
important questions about the relative contribution of the 
total body irradiation used during transplantation 
compared with the contribution of low CCR5 expression 
per se. The 2012 report21 of the clearance of HIV-1 DNA 
after allogeneic stem cell transplantation for lymphoma 
(in the absence of CCR5 mutations in the donor) raises 
the possibility that transplantation, potentially enhanced 
by graft-versus-host disease, could contribute to clearance 
of latently infected cells.

Two separate but related approaches for gene therapy 
are also being explored (fi gure 2). The fi rst uses zinc-
fi nger nucleases transfected into either autologous CD34-
positive stem cells or expanded populations of CD4 T cells 
that are reinfused back into the patient.45 The zinc fi nger 
targets CCR5 and permanently modifi es it or truncates it 
within the genome of the transduced cells, thereby 

providing a pool of cells permanently resistant to HIV-1 
infection (fi gure 2). CCR5 depletion with zinc-fi nger 
nucleases that target CCR5 eff ectively reduces HIV-1 in 
mouse models.46 An initial clinical trial showed a possible 
reduction in viral rebound after infusion of CCR5-
defi cient cells and structured treatment interruption in six 
patients.47 Reduction of CCR5 expression was associated 
with control of viraemia—one patient who had the most 
substantial CCR5 depletion had undetectable plasma 
viraemia by week 12. Although an important fi rst step, 
larger studies with more robust reductions in setpoint 
viral load in patients who are off  antiretroviral therapy are 
needed. A second approach is to knock down translation 
of CCR5 by use of a short interfering RNA (siRNA) that is 
retrovirally transduced into autologous CD34-positive or 
CD4 T cells (fi gure 2); this approach has also shown 
promise in preclinical investigation.48 Phase 1 trials of this 
method are expected to start in 2013.

An alternative gene therapy-based approach is to 
enforce latency so that viral rebound does not occur if 
antiretroviral therapy is stopped. This outcome could be 
achieved by targeting the HIV-1 promoter with siRNAs or 
short hairpin RNAs that induce transcriptional gene 
silencing of the virus via induction of stable epigenetic 
changes in the integrated viral genome, particularly in 
the viral promoter or 5  long terminal repeat (fi gure 2).49 
Sustained expression of these constructs in immune 
cells might allow a functional cure through the induction 
of long-term latency of the virus, resistant to reactivation 
by infl ammatory, proliferative, and homoeostatic stimuli. 
Although this approach is encouraging in vitro, it is 
many years away from reaching the clinic.

Immune modulation and immune eff ector 
mechanisms
Immunity is also likely to have an important role in 
controlling HIV latency. Several studies have examined 
therapeutic vaccines for their ability to control HIV in 

Drug n Design Results

Lehrman et al,37 2005 Valproic acid 4 Proof of concept study—treatment analysis of infectious units per million 
cells

Reduced viral reservoir after valproate given in combination 
with antiretroviral intensifi cation

Siliciano et al,38 2007 9 Observational study of patients on combined antiretroviral therapy and 
valproate

No diff erences in infectious units per million cells

Sagot-Lerolle et al,39 2008 11/13 Case-control study No eff ect

Archin et al,40 2010 3 Follow-up of Lehrman et al37 at 48 and 96 weeks No long-term eff ect of valproate in initial responders

Routy et al,41 2012 56 Randomised study 
(27 given valproate in weeks 0–16, 
29 given valproate in weeks 16–32)

No eff ect on infectious units per billion cells at 16 or 48 weeks

NCT01319383 Vorinostat 30 400 mg single dose; later investigation to use 400 mg daily for 
3 consecutive days per week (maximum 8 weeks)

Initial analysis35 of single dose in eight patients showed an 
increase in cell-associated HIV RNA in resting CD4 T cells

NCT01365065 20 400 mg daily for 14 days; initial follow-up to 24 weeks NA

NCT01680094 (CLEAR 
study)

Panobinostat 16 20 mg on days 1, 3, and 5, every other week for 8 weeks; viral load, 
proviral DNA, and infectious units per million cells  recorded for 32 weeks 

NA 

NCT01286259 Disulfi ram 20 500 mg daily for 1 month NA

Table: Clinical studies of drugs to reduce viral latency by activating the latent virus
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the absence of antiretroviral therapy. Most studies into 
therapeutic vaccines have focused on cytotoxic 
T-lymphocyte responses by attempting to boost and 
broaden HIV-1-specifi c CD4 and CD8 T-cell responses, 
but with little success to date.50–57 In the context of virus 
reactivation by drugs such as histone deacetylase 
inhibitors, antiretroviral therapy blocks the infection of 
new cells after reactivation. However, little is known 
about the fate of the reactivated cells. Reactivated latently 
infected CD4 T cells might die as a result of viral 
cytopathic eff ect or elimination by the host immune 
responses, but without active elimination of the cell, a 
risk remains that the reactivated virus-expressing cells 
will return to latency. 

Resting CD4 T cells latently infected with HIV-1 in 
vitro do not die after virus reactivation by the histone 
deacetylase inhibitor vorinostat,58,59 which suggests that 

reactivation alone will not purge the viral latent reservoir. 
However, Shan and colleagues58 have shown that when 
HIV-specifi c cytotoxic T lymphocytes were fi rst 
stimulated in vitro, they effi  ciently killed latently infected 
cells reactivated by the histone deacetylase inhibitor. 
Although data are limited to one in-vitro study, this 
fi nding adds credence to the idea of using therapeutic 
vaccines to activate cytotoxic T lymphocyte responses 
together with agents that reactivate latently infected 
cells. The induction of potent cytotoxic T lymphocyte 
responses in HIV-infected patients might, however, be 
diffi  cult with present HIV vaccine strategies. The 
improvement of therapeutic vaccines for the induction 
of such responses is one possible approach that could be 
pursued.60,61 For example, dendritic-cell-based vaccines 
have shown promise in this respect, although these can 
only be given in highly specialised centres.62 Conjugation 
of vaccines to anti-dendritic-cell antibodies to target the 
induction of potent cytotoxic T-lymphocyte responses is 
a simpler approach that showed promise in preclinical 
studies63 and is being investigated in a clinical trial 
(NCT01127464). The effi  cacy of live cytomegalovirus 
vector vaccines for the control of simian 
immunodefi ciency virus (SIV) infection in macaques 
suggests a possible role for similar cytomegalovirus 
vectors as therapeutic vaccines for HIV-1 in future 
studies.64 Unfortunately, some of the most eff ective HIV-
specifi c cytotoxic T lymphocytes are restricted by fairly 
uncommon HLA class I alleles (eg, HLA-B*27, 
HLA-B*57) and many existing responses in patients will 
have already forced viral escape early in the infection.65 

An alternative, non-MHC-restricted immune response 
that might recognise and eliminate reactivated latently 
infected cells is antibody-dependent cellular cytotoxicity 
(ADCC). HIV-specifi c ADCC antibodies mediate the 
killing of infected cells by binding to viral antigens on the 
surface of infected cells and engaging innate immune 
cells such as natural killer cells or monocytes through 
their Fc receptors.66 However, little is known about the 
eff ect of long-term antiretroviral therapy on HIV-specifi c 
ADCC. HIV-specifi c ADCC antibody responses are often 
high in patients with very slowly progressing HIV 
infection.67,68 Natural killer cell eff ectors are, however, 
decreased in number and can become dysfunctional in 
patients with progressive HIV disease, although results of 
recent studies suggest that function of natural killer cells 
is largely preserved, particularly in patients on eff ective 
antiretroviral therapy.69–77 We speculate that HIV-specifi c 
ADCC antibodies could potentially be induced to help to 
clear reactivated latently infected cells by use of protein 
therapeutic vaccines combined with potent adjuvants.

Another approach is to target cell-surface molecules 
that are highly expressed on cells that harbour latent 
HIV. The programmed cell death receptor PD-1 (also 
known as PDCD1) is highly expressed on so-called 
exhausted CD4 T cells that are resistant to activation and 
harbour latent HIV infection.78–80 The use of antibodies to 

Figure 2: Gene therapy approaches to reduce HIV latency and cure HIV
HIV usually enters cells by use of the CCR5 and CD4 coreceptors (A). Zinc fi ngers nucleases (ZFN) expressed by 
recombinant adenoviruses can block CCR5 gene expression, rendering the cell devoid of CCR5 and resistant to HIV. 
Alternatively, short hairpin RNAs (shRNAs) expressed by lentivirus vectors can degrade CCR5 RNA, also rendering the 
cell devoid of CCR5 and resistant to HIV, through expression of a short interfering RNA (siRNA) that binds to the CCR5 
messenger RNA (mRNA). Transcription of HIV is favoured by an open chromatin structure in the nucleus, shown by 
widely spaced histones (B, left). siRNA can bind to the RNA-induced transcriptional silencing (RITS) complex, which 
can result in chromatin compaction and silencing of HIV transcription (right), potentially leading to a permanent 
latent state for HIV in the cell. AGO1=argonaute RISC catalytic component 1. HDAC1=histone deacetylase 1. 
H3K9me=trimethylation of histone H3 at lysine 9.
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inhibit PD-1 and its ligand has recently shown substantial 
activity in cancer trials81,82 and some promise for the 
reduction of immune activation in macaques infected 
with SIV.83 Although such agents will have toxic eff ects, 
they could prove useful adjuncts to latency-eradication 
strategies.

Immune activation and latent HIV
Active HIV-1 infection is associated with increased 
immune activation. Antiretroviral therapy reduces 
immune activation, but not to normal. The residual 
immune activation is associated with residual long-term 
morbidity, despite antiretroviral therapy.84 Immune 
activation despite antiretroviral therapy might have a role 
in the promotion of low-level HIV replication and 
reseeding of the latent HIV-1 reservoir, although this idea 
remains controversial. The investigators of the study of 
raltegravir intensifi cation of antiretroviral therapy noted 
that the increase in non-integrated HIV-1 forms after the 
intervention (which implies continued low-level 
replication) was largely confi ned to patients with 
increased immune activation despite antiretroviral 
therapy.8 This fi nding lends support to the idea that 
immune activation might drive continued viral 
replication in patients on antiretroviral therapy. 

Drug treatments to reduce chronic infl ammation are of 
interest for several diseases,85 and such treatments are 
being investigated for HIV-induced immune activation 
in several small studies. These studies have two goals: to 
improve long-term morbidity and to reduce the 
continuing low-level HIV-1 replication that occurs despite 
antiretroviral therapy, which would allow more effi  cient 
decay or clearance of latently infected cells. The gut-
associated lymphoid tissues are damaged during HIV-1 
infection and probably contribute to persistent immune 
activation. Drugs being investigated in clinical trials to 
reduce gut-damage associated immune activation and 
so potentially to reduce latent HIV-1 reservoirs in clude 
probiotics (NCT01439841),86 anti-lipopolysaccharide 
antibodies,87 the bowel anti-infl ammatory agent 
mesalazine (NCT01090102), and the antibiotic rifaximin 
(NCT01466595). Research into treatment with agents 
such at valganciclovir to reduce herpesvirus-induced 
immune activation common in patients with HIV-1 is at 
the early proof-of-concept stage.88 Another approach 
being investigated in a clinical trial is the reduction of 
infl ammation and thereby the HIV reservoir by use of 
the angiotensin-converting-enzyme inhibitor lisinopril 
(NCT01535235). Whether approaches to reduce immune 
activation in HIV-1 infection will reduce the latent 
reservoir of HIV DNA is unknown.

Timing of interventions to reduce HIV latency
The timing of when antiretroviral therapy is started 
after HIV-1 infection might aff ect the extent of latency 
during treatment. Patients with acute HIV-1 infection 
treated with antiretroviral drugs have fewer latently 

infected cells, and the extent of latent infection seems 
to be associated with the size of the viral load and 
duration of viraemia before antiretroviral therapy.7 
Additionally, a small subset of patients given 
antiretroviral therapy during acute infection can 
control HIV well when treatment is stopped.4,7 
Although such individuals are diffi  cult to identify for 
recruitment to clinical trials, they could represent an 
opportunity to explore more eff ective interventions 
against latency.

A second question is when to give interventions to 
reduce latently infected cells relative to the timing of 
antiretroviral therapy. Studies are currently done in 
patients who are on long-term antiretroviral therapy. 
This approach has the advantage of minimising the risk 
that any HIV-1 activation could reseed the latent 
reservoir. On the other hand, this approach might mean 
that the latent pool is targeted at a time when it is more 
resistant to activation. Indeed, the notion of a stable 
population of latently infected CD4 T cells has 
historically been defi ned in the context of long-term 
antiretroviral therapy. However, some researchers have 
questioned whether such a stable reservoir of HIV-1 
DNA is also present during active infection,89 because of 
the high immune activation. If the latent HIV-1 DNA 
pool is much more labile during active infection, then 
this possibility presents a potential avenue for 
intervention.

Figure 3: Possible eff ects of early or late treatment with latency activators
We used a mathematical model of viral replication to explore how the timing of administration of a 
latency-activating drug could potentially aff ect the latent reservoir (A). The model is based on the assumption that 
the drug triples the activation rate and is given for a short time (3 days), either immediately before initiation of or 
after long-term use of combined antiretroviral therapy (cART). If the latency activator is given after long-term use 
of cART (B) it has a small eff ect on number of latently infected cells, because the cells are mostly quiescent. If the 
same latency activator is given for 3 days immediately before the start of cART (C), it causes a large decrease in the 
number of latently infected cells, because the cells already have a high reactivation rate. The model is adapted from 
the standard model of HIV infection96,97 such that a proportion of infected CD4 T cells (1-f) enters the latent pool 
(L). Latent cells do not produce virus or die, but can be activated to become productively infected cells at a rate 
proportional to the viral load (αV, where α is the activation constant). cART blocks new infections—the equivalent 
of setting susceptibility β to zero (on the assumption that the treatment is 100% eff ective). Parameters used in the 
fi gure: λ=10 cells/mL per day; f=0·95; dT=0·01 per day; α=1·25 × 10�⁷; β=8 × 10�⁸ mL/copy per day; 
p=800 copies/cell per day; δ=0·8 per day; c=20 per day.
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We recently studied the turnover of viral DNA in 
resting CD4 T cells in active SIV infection of macaques.90 
When viral loads were low, the turnover of the putative 
latent reservoir was very slow (many years), which is 
consistent with the low turnover of virus in patients 
with HIV-1 on treatment. However, in animals with 
high viral loads, the turnover of SIV DNA within resting 
CD4 T cells was fast (days), which suggests that high 
immune activation during active infection might 
prevent the establishment of true latency. This idea is 
supported by fi ndings from a study in patients after the 
initiation of antiretroviral therapy that suggested rapid 
exchange between productively and latently infected cell 
pools during both chronic and acute infection.91 
Additionally, studies in HIV-infected patients show a 
delay between the appearance of mutations in plasma 
and their appearance in the proviral DNA, both for 
immune-adaptive mutations92 and drug-resistance 
mutations.93–95 

These fi ndings suggest a new strategy to address the 
reduction or elimination of the viral reservoir. Since 
many agents currently under investigation aim to purge 
the latent reservoir through activation of latent cells, 
targeting the reservoir when it is already turning over 
rapidly during active infection might be easier to achieve 
than when it is stable under long-term antiretroviral 
therapy. The possible eff ects of giving a latency-activating 
drug at diff erent times relative to antiretroviral therapy 
can be investigated by use of a simple model of HIV 
infection (fi gure 3).96,97 The model predicts that the short-
term treatment with latency activators would have the 
strongest eff ect on latent HIV-1 DNA if given immediately 
before commencement of antiretroviral therapy, when it 
enhances the already existing high activation rate of 
latent cells caused by the high viral load. Of course, the 
precise mechanisms of action of a putative latency-
activating drug are uncertain, as is whether these would 
work synergistically with immune activation (as is 
assumed here). Moreover, whether the reduction in 
latent HIV would be suffi  cient to reliably yield a 
functional cure in the absence of antiretroviral therapy 
remains unknown, but studies aimed at the incremental 
reduction of the reservoir size should ultimately answer 
such questions.

The timing-of-cure approaches with respect to initiation 
of antiretroviral therapy could hold some promise, but 
they are not without their own risks. A very real potential 
exists for toxic eff ects from attempts to cure at the time of 

starting antiretroviral therapy, since cellular activation, 
the loss of a key subset of immune cells, and potentially 
further increases of HIV-1 replication could be transiently 
induced. Paradoxically, the results of our previous study90 
and our model (fi gure 3) suggest that the patients who 
could benefi t the most from such an intervention would 
be those with high levels of viral replication—ie, those 
who are likely to have a high turnover of HIV-1 DNA 
within resting CD4 T cells, making this reservoir more 
vulnerable. 

Conclusions
Innovative strategies to reduce or eliminate latent HIV-1 
infection are being pursued to reduce the global burden 
of HIV and costs and adverse eff ects associated with 
lifelong antiretroviral therapy. Several diff erent strategies 
are in early stage clinical trials. Approaches that attempt 
to reduce latent HIV at the time that antiretroviral 
therapy is started should also be investigated.
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